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‘ Frozen granular gases I

Saturn’s rings snow avalanche




Large scale formation of matter in the universe




‘ Filaments in granular gases I

X Nie, S Chen, EB 02



‘ Energy dissipation in granular matter I

¢ Responsible for collective phenomena
» Clustering
» Hydrodynamic instabilities

» Pattern formation

& Anomalous statistical mechanics
»No energy equipartition

»Nonequilibrium energy distributions



‘ Experiments I

¢ Friction
D Blair, A Kudrolli 01

¢ Rotation
K Feitosa, N Menon 04
¢ Driving strength
W Losert, J Gollub 98
¢ Dimensionality

J Urbach & Olafsen 98

Boundary
J van Zon, H Swinney 04

Fluid drag

K Kohlstedt, | Aronson, EB 05

Long range interactions

D Blair, A Kudrolli 01: W Losert 02
K Kohlstedt, J Olafsen, EB 05

Substrate
G Baxter, J Olafsen 04

Deviations from equilibrium distribution
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‘ Driven Granular gas I

Vigorous driving % ”
Spatially uniform system ‘\ PP

Particles undergo binary collisions | ®3 I IZ.

Velocities change due to \.zj‘K.

1. Collisions: lose energy

2. Forcing: gain enerqy

What is the typical velocity (granular “temperature”)?
T = (v°)
What is the velocity distribution?

f(w)



‘ Non-Maxwellian velocity distributions I

JC Maxwell, Phil Trans Roy. Soc. 157 49 (1867)
1. Velocity distribution is isotropic

2. No correlations between velocity components

f(vata Uy, ’Uz) A f(”w)f(vy)f(’UZ)

Only possibility is Maxwellian

f(U:caUyavz)¢CeXD< v _I_v _I_v ) Ga

Granular gases: collisions create correlations ‘




‘ Deviation from Maxwell-Boltzmann I

¢ Kurtosis K So————7 1 1

4 2\ 2 '

k= (v*)/(v?)
34 180204 K

33 =257+ 3r<—=3r° 3.2

¢ Restitution coefficient 7

AE x (1—r2) (Av)? ¥ ""02 04 06 08
< (1 -77) (Av)

1. Velocity distribution independent of driving strength
2. Stronger dissipation yields stronger deviation

Exact solution of Maxwell’s kinetic theory: thermal forcing balances dissipation
EB, Krapivsky 02




‘ Nonequilibrium velocity distributions I

Mechanically vibrated beads
F Rouyer & N Menon 00
Electrostatically driven powders
| Aronson & J Olafsen 05

f(v)

¢ Gaussian core

¢ Overpopulated talil
f(v) ~ exp (—[v])

0

10
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¥ experiment A
O  experiment B
theory

M, — Maxwellian

Excellent agreement between
theory and experiment

1 <9< 3/2
& Kurtosis
{") | gl g de b A~ e s
) S5.00 neory
g
13 6 experiment

balance between
collisional dissipation,
energy injection from walls




‘ Inelastic Collisions I

¢ Relative velocity reduced by O <r <1

vy — v = —r(ur —up) vl\ /”02 “

¢ Momentum iIs conserved
v1 + v = ug + up “1/

U
¢ Energy is dissipated
‘A 9 - (1 \2 Q Q

AYV.N
AL X (1 —71)(Av)

¢ Limiting cases x

__]0 completely inelastic (AE = max)
|1 elastic (AE = 0)




‘ Time dependent states I

5 Haff, JFM 1982
¢ Energy loss AT ~ (Av)

¢ Collision rate At ~ 1/(Av)>‘
¢ Energy balance equation

AT ~—(AV)2TA o ar ~ _T1+A/2

7T

AN 5 dt

¢ Temperature decays, system comes to rest

T~t2/A = f(v) — 6(v)

Trivial steady-state‘




‘ Kinetic Theory I

(a7 m
\ui,u2) — \pP

¢ Boltzm equation (nonlinear and nonlocal)

At = WA\
OP(v)

AT

// - - n t N n J N ~ 4 N 4
= = IIII dfu,ld,fu,zj (\71,1 )j (\fu ) UT—UD _()(\?)—;mm —qfu,2) —()(\?)
U

|4

collision rate gain

Theory: non-linear, non-local, dissipative




‘ Are there nontrivial steady states? I

¢ Stationary Boltzmann equation

collision rate gain loss

Nalve answer: NO!

¢ According to the energy balance equation
dl’
dt
¢ Dissipation rate is positive

[ >0

—




‘ An exact solution I

¢ One-dimensional Maxwell molecules
¢ Fourier transform obeys a closed equation F<k>=J/dveikvf(v>

F(k) = F(pk)F(qk)

¢ Exponential solution
F (k) = exp(—uvglk|)

¢ Lorentzian velocity distribution

AN 1 1
j(fv) — - ) 7/ / \ D
T L+ (v/vg )~

‘ Nontrivial stationary states do exist! ‘




‘ Cascade Dynamics (1D) I

¢ Collision rule: arbitrary velocities

/f) \ N\ {/Y\f) AN~ N 1~ Ve X¢ N I
\ui, u2) — \PpuUj qup, pu 441

Y
® > —0 o) & >

¢ Large velocities: linear but nonlocal process .

v — (pv, qu) @\

7
¢ High-energies: linear equation \A
.1 (v 1 (v
v) = )\f R 1 )\j a
loss gain gain

¢ Power-law tall

f(v) ~ v 27A



‘ Cascade Dynamics (any D) I

¢ Collision process: large velocities

YA
O\
= v (an ) (5B

¢ Stretching parameters related to impact angle

a=(1—-p)cosb 6:\/1—(1—p2)c0529

¢ Energy decreases, velocity magnitude increases

a2—|—5221 Oti—|—/6§1|

¢ Steady state equation
1 1
oy = (-2 (YL L o

AT \ v/ FATAY

1Y/
\NLu / /L/

N—
~—

@ S




‘ Power-laws are generic I

¢ Velocity distributions always has power-law tail
o

¢ Exponent varies with parameters

/

1 A
L W A

o

1—oFy (H572 25 A 197)  r(e=gE)r(4)
(1~ p)o—d=A O TOreEh

¢ Tightbounds 1 <o—d—X <2

¢ Elastic limit is singular ¢ — d+2+A

Dissipation rate always divergent
Energy finite or infinite




‘ The characteristic exponent o I

002 04 086 08 1
T

‘cvaries with spatial dimension, collision rules ‘




‘ Monte Carlo Simulations I

——————T——T——————
. |=— theory
O simulation

¢ Compact initial distribution

0.3F

¢ Inject energy at very large
velocity scales only

¢ Maintain constant total ¥ 0.2F

energy

¢ “Lottery” implementation: 0.1
— Keep track of total energy -
dissipated, E;

— With small rate, boost a particle
by E; U

Excellent agreement between theory and simulation



Further confirmation

Maxwell molecules (1D, 2D)

TR
-1
— theory
-2 —— simulation
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-4
_5_
T N=10"
0 1
10 10 10
Vv

d | theory simulation

1 2 1.-095

2 13.19520 3.19

M S R
O O o

© N D A DN A

f10

R —Y
o O O

N

—

o
—k
-

Hard spheres (1D, 2D)
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‘ Injection, cascade, dissipation I

Experimental
realization?
Energetic particle
“shot” into static
medium

Energy balance

I_N’yV2

YO jogy V

*Energy iIs injected at large velocity scales
‘*Energy cascades from large velocities to small velocities
‘*Energy dissipated at small velocity scales



‘ Energy balance I

¢ Energy injection rate 7Y
& Energy injection scale |/
¢ Typical velocity scale v

¢ Balance between energy injection and dissipation
A d—o
v~ V7 (V/vg)

¢ For “lottery” injection: injection scale diverges with
Injection rate

U - w H <



‘ Traditional forcing: Injection, dissipation I

T van Noije, M Ernst 97
¢ Energy injection: thermal forcing (at all scales)

dv/dt = n
¢ Energy dissipation: inelastic collision
v — (pv, qu)
¢ Steady state equation
0= pT I 2 [y 7] - s
=V |p=—===—XP/ 47T TR ]

¢ Stretched exponentlals

v) ~ exp (—viTA2)
TR )



with Ben Machta (Brown)

‘ Self-similar collapse I

4__

o o . 10
& Self-similar distribution

v
v.t) ~v %D

¢ Cutoff velocity decays

V(t) ~ t—1/>\ 10
10
¢ Scaling function
* - < o0 1
D(r) p— v A exD |_(’)nfr'\/\| Ap = . PEVEA
~ \W/ LJ £ ATl /NN | \A W/ | k:l 1 — 27"\t
n=1 ) ) k7=n

Hybrid between steady-state and time dependent state




‘ Numerical confirmation I

Velocity distribution Scaling function

A third family of solutions exists




‘ Conclusions I

¢ New class of nonequilibrium stationary states

¢ Energy cascades from large to small velocities

¢ Power-law high-energy talil

¢ Energy input at large scales balances dissipation
¢ Associated similarity solutions exist as well

¢ Temperature insufficient to characterize velocities

¢ Experimental realization: requires a different driving
mechanism



‘ Outlook I

¢ Spatially extended systems
¢ Spatial structures
¢ Polydisperses granular media

¢ Experimental realization

E. Ben-Naim and J. Machta, PRL 91 (2005) cond-mat/0411473
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